


#### **Overview**

KEMET's CAS surface mount safety certified capacitors are specifically designed for interference-suppression AC line filtering applications. When comparing to radial leaded disc capacitors, the CAS surface mount form factor provides engineers the ability to miniaturize their designs with a higher density solution. Having internationally recognized safety certifications, these capacitors are well-suited for applications that require keeping potentially disruptive or damaging line transients and EMI out of susceptible equipment. They are also an ideal solution when needing to suppress line disturbances at the source. Safety Certified Capacitors are classified as either X and/or Y capacitors. Class X capacitors are primarily used in line-to line (across-the-line) applications. Should the capacitor fail in this application, there is no danger of electric shock to humans but could result in a risk of fire. The Class Y capacitor is primarily used in line-to-ground (line by-pass) applications. In this application, failure of the capacitor could lead to danger of electric shock.

With a working voltage of 250 VAC in line-to-line (Class X) and 250 VAC in line-to-ground (Class Y) applications, these safety capacitors meet the impulse test criteria outlined in IEC Standard 60384. Meeting subclass X1 and Y2 requirements, these devices are certified to withstand impulses up to 5 KV (X1/Y2) and 2.5 KV (X2) respectively.

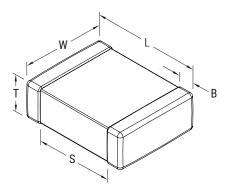




### **Benefits**

- · Safety Certified to IEC 60384-14
- Class X1/Y2, X2
- 250 VAC rating
- 2.5 kV and 5 kV Impulse Voltages
- Reliable operation up to 125°C
- Available in COG and X7R Dielectrics
- Case sizes 1808, 1812, 2211, and 2220
- Capacitance offerings ranging from 3.0 pF to 22 nF
- Available capacitance tolerances from  $\pm 0.5 \mbox{ pF}$  to  $\pm 20\%$
- RoHS compliant

# **Applications**


- Typical applications include:
- · Line-to-line (Class X) filtering
- · Line-to-ground (Class Y) filtering
- · Antenna coupling
- Primary and secondary coupling (switching power supplies)
- Line disturbances suppression (motors and motor controls, relays, switching power supplies, and inverters)



# **Ordering Information**

| CAS                         | 17                                               | C                        | 471                                                                                                | K                                                                    | Α                   | G                  | F                       | С                     |                              |
|-----------------------------|--------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|--------------------|-------------------------|-----------------------|------------------------------|
| Туре                        | Case Size<br>(L"x W")                            | Specification/<br>Series | Capacitance<br>Code (pF)                                                                           | Capacitance<br>Tolerance                                             | AC Rated<br>Voltage | Dielectric         | Subclass<br>Designation | Termination<br>Finish | Packaging<br>(Suffix/C-Spec) |
| CAS =<br>AC Safety<br>Rated | 17 = 1808<br>18 = 1812<br>21 = 2220<br>26 = 2211 | C                        | Two significant<br>digits + number of<br>zeros.<br>Use 9 for 1.0 - 9.9<br>pF<br>e.g., 2.2 pF = 229 | D = ±0.5 pF<br>F = ±1%<br>G = ±2%<br>J = ±5%<br>K = ±10%<br>M = ±20% | A =<br>250 VAC      | G = COG<br>R = X7R | F = X1/Y2<br>G = X2     | C = 100% Matte Sn     | Blank =<br>7" Reel           |

# **Dimensions – Millimeters (Inches)**



| EIA Size<br>Code | Metric<br>Size Code | L<br>Length                                 | W<br>Width                    | T<br>Thickness               | B<br>Bandwidth                | S<br>Separation<br>Minimum | Mounting<br>Technique |
|------------------|---------------------|---------------------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|-----------------------|
| 1808             | 4520                | 4.50 (0.177)<br>+0.50 (0.020)/-0.30 (0.012) | 2.00 (0.080)<br>±0.25 (0.010) |                              | 0.50 (0.020)<br>±0.25 (0.010) | > 3.50 (0.138)             |                       |
| 1812             | 4532                | 4.50 (0.177)<br>+0.50 (0.020)/-0.30 (0.012) | 3.20 (0.126)<br>±0.40 (0.016) | See Table 2 for<br>Thickness | 0.50 (0.020)<br>±0.25 (0.010) | > 3.50 (0.138)             | Solder Reflow<br>Only |
| 2211             | 5728                | 5.70 (0.224)<br>±0.40 (0.016)               | 2.80 (0.110)<br>±0.30 (0.012) |                              | 0.60 (0.024)<br>±0.30 (0.012) | > 4.00 (0.157)             | ony                   |
| 2220             | 5750                | 5.70 (0.224)<br>±0.40 (0.016)               | 5.00 (0.197)<br>±0.40 (0.016) |                              | 0.60 (0.024)<br>±0.30 (0.012) | > 4.00 (0.157)             |                       |

# Qualification

| Safety Standard | Specification   | Subclass | Working Voltage | Certificate No.   |  |
|-----------------|-----------------|----------|-----------------|-------------------|--|
| TUV             | IEC 60384-14    | X1/Y2    | 250 VAC         | <u>R 50441101</u> |  |
| IUV             | IEC 00384-14    | X2       | 250 VAC         | <u>R 50441118</u> |  |
| UL              | UL 60384-14 and | X1/Y2    | 250 VAC         | <u>E356389</u>    |  |
| CAN/CSA         | E60384-14       | X2       | 230 VAC         |                   |  |

These devices are TUV/ENEC recognized for antenna coupling and AC line-to-line (Class X) and line-to-ground (Class Y) applications per IEC60384–14.



### **Environmental Compliance**

These devices are RoHS compliant. They meet all requirements set forth by EU RoHS directives.



# Table 1A - Product Ordering Codes & Ratings - X1/Y2 COG

|                                                                    |                                                      |                                 |                  | Case                       | Size             |                                                |                  | 1808                             | 1812                                     | 2211                       |  |
|--------------------------------------------------------------------|------------------------------------------------------|---------------------------------|------------------|----------------------------|------------------|------------------------------------------------|------------------|----------------------------------|------------------------------------------|----------------------------|--|
| Conscitones                                                        | Capacitance                                          |                                 |                  | Cla                        | ass              |                                                |                  | X1/Y2                            |                                          |                            |  |
| Capacitance                                                        | Code                                                 |                                 | Pea              | k Impu                     | lse Voltage      |                                                |                  | 5,000 V                          |                                          |                            |  |
|                                                                    |                                                      |                                 | Cap              | acitanc                    | e Toler          | ance                                           |                  | See Table 2                      | bility and Chip Th<br>for Chip Thickness |                            |  |
| 3.0 pF<br>3.3 pF<br>3.9 pF<br>4.0 pF<br>4.7 pF<br>5.0 pF<br>5.6 pF | 309<br>339<br>399<br>409<br>479<br>509<br>509<br>569 | D<br>D<br>D<br>D<br>D<br>D<br>D |                  |                            |                  |                                                |                  | AF<br>AF<br>AF<br>AF<br>AF<br>AF |                                          | СК<br>СК<br>СК<br>СК       |  |
| 6.0 pF<br>6.8 pF<br>7.0 pF                                         | 609<br>689<br>709                                    | D<br>D<br>D<br>D                |                  |                            |                  |                                                |                  | AF<br>AF<br>AF                   |                                          | CK<br>CK<br>CK             |  |
| 8.0 pF<br>8.2 pF<br>10 pF<br>12 pF<br>15 pF                        | 809<br>829<br>100<br>120<br>150                      | D<br>D                          | F<br>F<br>F      | G<br>G<br>G                | J<br>J           | K<br>K<br>K                                    | M<br>M<br>M      | AF<br>AF<br>AF<br>AF<br>AF       | BD<br>BD<br>BD                           | CK<br>CK<br>CK<br>CK<br>CK |  |
| 18 pF<br>22 pF<br>27 pF<br>33 pF<br>39 pF                          | 180<br>220<br>270<br>220<br>390                      |                                 | F<br>F<br>F<br>F | G<br>G<br>G<br>G<br>G      | 1<br>1<br>1      | К<br>К<br>К<br>К<br>К<br>К                     | M<br>M<br>M<br>M | AF<br>AF<br>AF<br>AF<br>AG       | BD<br>BD<br>BD<br>BD<br>BD               | CK<br>CK<br>CK<br>CK       |  |
| 47 pF<br>56 pF<br>68 pF<br>82 pF<br>100 pF                         | 470<br>560<br>680<br>820<br>101                      |                                 | F<br>F<br>F<br>F | G G G G G                  | ]<br>]<br>]      | КККК                                           | M<br>M<br>M<br>M | AG<br>AG<br>AG<br>AG<br>AK       | BD<br>BD<br>BD<br>BD<br>BD               | CK<br>CK<br>CK<br>CK<br>CK |  |
| 120 pF<br>150 pF<br>160 pF<br>180 pF<br>220 pF                     | 121<br>151<br>161<br>181<br>221                      |                                 | F<br>F<br>F<br>F | G<br>G<br>G<br>G<br>G<br>G | J<br>J<br>J<br>J | кккк                                           | M<br>M<br>M<br>M | АК<br>АК<br>АК<br>АК             | BD<br>BD<br>BD<br>BK                     | CM<br>CM<br>CM<br>CM       |  |
| 270 pF<br>330 pF<br>390 pF<br>470 pF<br>560 pF                     | 271<br>331<br>391<br>471<br>561                      |                                 | F<br>F<br>F<br>F | G<br>G<br>G<br>G<br>G      | 1<br>1<br>1      | K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K | M<br>M<br>M<br>M | AK                               | BK<br>BK<br>BK<br>BK                     | CM<br>CM<br>CM<br>CM<br>CM |  |
| 680 pF<br>720 pF<br>820 pF<br>1,000 pF                             | 681<br>721<br>821<br>102                             |                                 | F<br>F<br>F<br>F | G<br>G<br>G<br>G           | J<br>J<br>J      | K<br>K<br>K                                    | M<br>M<br>M      |                                  |                                          | СМ                         |  |



# Table 1B – Product Ordering Codes & Ratings – X1/Y2 X7R

|                                 | (                                                                                                                                         | Case Siz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ze 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1812                                                                                                                                                                                                   | 2211                                                                                                                                                                                                                                                                                                                                | 2220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Capacitance                     |                                                                                                                                           | Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X1/Y2                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Code                            | Peak                                                                                                                                      | Impulse \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /oltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,0                                                                                                                                                                                                    | 00V                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                 | Capacitance Tolerance                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pro<br>Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | duct Availability and<br>ee Table 2 for Chip 1                                                                                                                                                         | d Chip Thickness Co<br>Thickness Dimensio                                                                                                                                                                                                                                                                                           | odes<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 121<br>151<br>181<br>221<br>271 |                                                                                                                                           | K<br>K<br>K<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AG<br>AG<br>AG<br>AG<br>AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BG<br>BG<br>BG<br>BG                                                                                                                                                                                   | CG<br>CG<br>CG<br>CG                                                                                                                                                                                                                                                                                                                | DK<br>DK<br>DK<br>DK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 391<br>471<br>561<br>681        | J<br>J<br>J                                                                                                                               | K<br>K<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AK<br>AK<br>AK<br>AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BG<br>BG<br>BG<br>BK                                                                                                                                                                                   | CG<br>CK<br>CK<br>CK                                                                                                                                                                                                                                                                                                                | DK<br>DK<br>DK<br>DK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 102<br>122<br>152               | してし                                                                                                                                       | K<br>K<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AK<br>AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BK<br>BM                                                                                                                                                                                               | CM<br>CM<br>CM                                                                                                                                                                                                                                                                                                                      | DK<br>DK<br>DM<br>DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 222<br>272<br>332<br>392        | J<br>J<br>J                                                                                                                               | K<br>K<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | CM<br>CM                                                                                                                                                                                                                                                                                                                            | DM<br>DM<br>DM<br>DM<br>DM<br>DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                 | Code<br>101<br>121<br>151<br>181<br>221<br>271<br>331<br>391<br>471<br>561<br>681<br>821<br>102<br>122<br>152<br>182<br>222<br>272<br>332 | Capacitance<br>Code         Peak           101         J           121         J           151         J           151         J           181         J           221         J           331         J           391         J           471         J           561         J           681         J           821         J           102         J           122         J           122         J           122         J           221         J           331         J           321         J           322         J           122         J           132         J           102         J           122         J           182         J           222         J           272         J           332         J           392         J | Capacitance<br>Code         Class           Peak Impulse V         Peak Impulse V           Capacitance To         Capacitance To           101         J         K           121         J         K           151         J         K           151         J         K           181         J         K           221         J         K           331         J         K           391         J         K           102         J         K           102         J         K           122         J         K           152         J         K           182         J         K           272         J         K           332         J         K | Capacitance<br>Code         Peak Impulse Voltage           Peak Impulse Voltage         Capacitance Tolerance           101         J         K         M           121         J         K         M           151         J         K         M           151         J         K         M           221         J         K         M           271         J         K         M           331         J         K         M           391         J         K         M           681         J         K         M           102         J         K         M           122         J         K         M           182         J         K         M           272         J         K         M           332         J         K         M | Capacitance<br>CodeClassPeak Impulse VoltageCapacitance ToleranceProvide<br>Se101JKMAG121JKMAG151JKMAG181JKMAG221JKMAG271JKMAK331JKMAK391JKMAK561JKMAK681JKMAK102JKMAK152JKMAK182JKMAK222JKMAK392JKMAK | Capacitance<br>CodeClassX1,Peak Impulse VoltageSecCapacitance ToleranceProduct Availability and<br>See Table 2 for Chip To101JKMAGBG121JKMAGBG151JKMAGBG181JKMAGBG221JKMAGBG271JKMAKBG331JKMAKBG391JKMAKBG4771JKMAKBG561JKMAKBG561JKMAKBK821JKMAKBM122JKMAKBM122JKMAKBM122JKMAKBM182JKMAKBM222JKMAKBM222JKMAKBM232JKMAKAK392JKMAKAK | Capacitance<br>Code         X1/Y2           Peak Impulse Voltage         S,000V           Capacitance Tolerance         Product Availability and Chip Thickness Co<br>See Table 2 for Chip Thickness Dimension           101         J         K         M         AG           121         J         K         M         AG           151         J         K         M         AG           181         J         K         M         AG           221         J         K         M         AG           211         J         K         M         AG           221         J         K         M         AG           221         J         K         M         AG           331         J         K         M         AG           391         J         K         M         AK         BG           4771         J         K         M         AK         BG         CK           681         J         K         M         AK         BK         CK           681         J         K         M         AK         BM         CM           102 |  |  |  |  |



### Table 1C – Product Ordering Codes & Ratings – X2 COG

|                                                |                                 |                  | Case Size             |                       |                  |             | 1808                                               | 1812                                           |                            |  |
|------------------------------------------------|---------------------------------|------------------|-----------------------|-----------------------|------------------|-------------|----------------------------------------------------|------------------------------------------------|----------------------------|--|
| Conscitones                                    | Capacitance                     |                  |                       |                       | ass              |             |                                                    | X2                                             |                            |  |
| Capacitance                                    | Code                            |                  | Pea                   | k Impu                | lse Vol          | tage        |                                                    | 2,5                                            | 00V                        |  |
|                                                |                                 |                  | Capacitance Tolerance |                       |                  |             | Product Availability and<br>See Table 2 for Chip 1 | d Chip Thickness Codes<br>Fhickness Dimensions |                            |  |
| 3.0 pF<br>4.0 pF<br>5.0 pF<br>6.0 pF<br>7.0 pF | 309<br>409<br>509<br>609<br>709 | D<br>D<br>D<br>D |                       |                       |                  |             |                                                    | AF<br>AF<br>AF<br>AF<br>AF                     |                            |  |
| 8.0 pF<br>9.0 pF<br>10 pF<br>12 pF<br>15 pF    | 809<br>909<br>100<br>120<br>150 | D<br>D           | F<br>F<br>F           | G<br>G<br>G           | J<br>J           | K<br>K<br>K | M<br>M<br>M                                        | AF<br>AF<br>AF<br>AF<br>AF                     | BD<br>BD<br>BD             |  |
| 22 pF<br>27 pF<br>33 pF<br>39 pF<br>47 pF      | 220<br>270<br>330<br>390<br>470 |                  | F<br>F<br>F<br>F      | G<br>G<br>G<br>G<br>G | J<br>J<br>J      | кккк        | M<br>M<br>M<br>M                                   | AF<br>AF<br>AG<br>AG                           | BD<br>BD<br>BD<br>BD<br>BD |  |
| 56 pF<br>68 pF<br>82 pF<br>100 pF<br>120 pF    | 560<br>680<br>820<br>101<br>121 |                  | F<br>F<br>F<br>F      | G<br>G<br>G<br>G<br>G | J<br>J<br>J<br>J | кккк        | M<br>M<br>M<br>M                                   | AG<br>AG<br>AG<br>AK<br>AK                     | BD<br>BD<br>BD<br>BD<br>BD |  |
| 150 pF<br>180 pF<br>220 pF<br>270 pF<br>330 pF | 151<br>181<br>221<br>271<br>331 |                  | F<br>F<br>F<br>F      | G<br>G<br>G<br>G<br>G | J<br>J<br>J      | кккк        | M<br>M<br>M<br>M                                   | АК<br>АК<br>АК<br>АК<br>АК                     | BD<br>BD<br>BD<br>BF<br>BF |  |
| 390 pF<br>470 pF<br>560 pF<br>680 pF<br>820 pF | 391<br>471<br>561<br>681<br>821 |                  | F<br>F<br>F<br>F      | G<br>G<br>G<br>G<br>G | J<br>J<br>J<br>J | кккк        | M<br>M<br>M<br>M                                   | АК<br>АК<br>АК<br>АК<br>АК                     | BF<br>BG<br>BK<br>BK<br>BM |  |
| 1,000 pF                                       | 102                             |                  | F                     | G                     | J                | K           | М                                                  | AK                                             | BM                         |  |

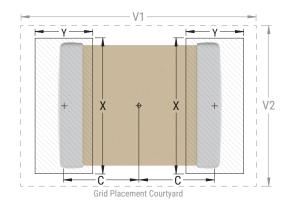


# Table 1D – Product Ordering Codes & Ratings – X2 X7R

|                                                          |                                 | (                     | Case Siz                             | e                     | 1808                             | 1812                                                                                       | 2220           |  |  |  |
|----------------------------------------------------------|---------------------------------|-----------------------|--------------------------------------|-----------------------|----------------------------------|--------------------------------------------------------------------------------------------|----------------|--|--|--|
| Capacitance                                              | Capacitance                     |                       | Class                                |                       | X2                               |                                                                                            |                |  |  |  |
| Capacitance                                              | Code                            | Peak                  | Peak Impulse Voltage                 |                       |                                  | 2,500V                                                                                     |                |  |  |  |
|                                                          |                                 | Capacitance Tolerance |                                      |                       | Product Avail<br>See Table 2     | Product Availability and Chip Thickness Codes<br>See Table 2 for Chip Thickness Dimensions |                |  |  |  |
| 150 pF<br>180 pF<br>220 pF<br>270 pF<br>300 pF           | 151<br>181<br>221<br>271<br>301 | J<br>J<br>J           | K<br>K<br>K<br>K<br>K                | M<br>M<br>M<br>M      | AG<br>AG<br>AG<br>AG<br>AG       | BG<br>BG                                                                                   |                |  |  |  |
| 330 pF<br>390 pF<br>470 pF<br>560 pF<br>680 pF           | 331<br>391<br>471<br>561<br>681 | J<br>J<br>J           | K<br>K<br>K<br>K<br>K                | M<br>M<br>M<br>M<br>M | AG<br>AG<br>AG<br>AG<br>AG<br>AG | BG<br>BG<br>BG<br>BG<br>BG<br>BG                                                           |                |  |  |  |
| 720 pF<br>820 pF<br>1,000 pF<br>1,200 pF<br>1,500 pF     | 721<br>821<br>102<br>122<br>152 | J<br>J<br>J           | K<br>K<br>K<br>K<br>K                | M<br>M<br>M<br>M      | AG<br>AG<br>AK<br>AK<br>AK       | BG<br>BG<br>BG<br>BG<br>BK                                                                 |                |  |  |  |
| 1,800 pF<br>2,200 pF<br>2,700 pF<br>3,300 pF<br>3,900 pF | 182<br>222<br>272<br>332<br>392 | )<br>]<br>]           | K<br>K<br>K<br>K<br>K<br>K<br>K      | M<br>M<br>M<br>M<br>M | AK<br>AK                         | BK<br>BM<br>BM<br>BM<br>BM                                                                 |                |  |  |  |
| 4,700 pF<br>5,600 pF<br>0.010 uF<br>0.012 uF<br>0.015 uF | 472<br>562<br>103<br>123<br>153 | J<br>J<br>J           | K<br>K<br>K<br>K<br>K<br>K<br>K<br>K | M<br>M<br>M<br>M<br>M |                                  | BM<br>BM<br>BM                                                                             | DM<br>DM<br>DM |  |  |  |
| 0.018 uF<br>0.022 uF                                     | 183<br>223                      | J                     | K<br>K                               | M                     |                                  |                                                                                            | DM<br>DU<br>DU |  |  |  |



### Table 2 – Chip Thickness/Tape & Reel Packaging Quantities


| Case<br>Size | Thickness<br>Code | Thickness<br>Range (mm) | Plastic<br>Quantity |
|--------------|-------------------|-------------------------|---------------------|
|              | AF                | 1.40±0.15               | 2,000               |
| 1808         | AG                | 1.60±0.20               | 2,000               |
|              | AK                | 2.00±0.20               | 1,000               |
|              | BD                | 1.25±0.10               | 1,000               |
|              | BF                | 1.40±0.15               | 1,000               |
| 1812         | BG                | 1.60±0.20               | 1,000               |
|              | BK                | 2.00±0.20               | 1,000               |
|              | BM                | 2.50±0.30               | 500                 |
|              | CG                | 1.60±0.20               | 1,000               |
| 2211         | СК                | 2.00±0.20               | 1,000               |
| 2211         | СМ                | 2.50±0.30               | 500                 |
|              | CU                | 2.80±0.30               | 500                 |
|              | DK                | 2.00±0.20               | 1,000               |
| 2220         | DM                | 2.50±0.30               | 500                 |
|              | DU                | 2.80±0.30               | 500                 |

#### Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351

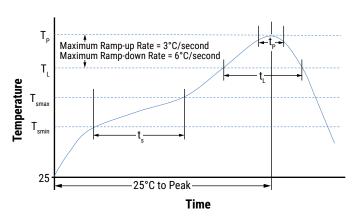
| EIA<br>Size<br>Code | Metric<br>Size<br>Code | Density Level A:<br>Maximum (Most)<br>Land Protrusion (mm) |      |      |      | I    | Density Level B:<br>Median (Nominal)<br>Land Protrusion (mm) |      |      |      | Density Level C:<br>Minimum (Least)<br>Land Protrusion (mm) |      |      |      |      |      |
|---------------------|------------------------|------------------------------------------------------------|------|------|------|------|--------------------------------------------------------------|------|------|------|-------------------------------------------------------------|------|------|------|------|------|
| ooue                | ooue                   | C                                                          | Y    | X    | V1   | V2   | C                                                            | Y    | X    | V1   | V2                                                          | C    | Y    | X    | V1   | V2   |
| 1808                | 4520                   | 2.30                                                       | 1.75 | 2.30 | 7.40 | 3.30 | 2.20                                                         | 1.55 | 2.20 | 6.50 | 2.70                                                        | 2.10 | 1.35 | 2.10 | 5.80 | 2.40 |
| 1812                | 4532                   | 2.15                                                       | 1.60 | 3.60 | 6.90 | 4.60 | 2.05                                                         | 1.40 | 3.50 | 6.00 | 4.00                                                        | 1.95 | 1.20 | 3.40 | 5.30 | 3.70 |
| 2211                | 5728                   | 2.81                                                       | 1.70 | 3.21 | 7.30 | 3.40 | 2.76                                                         | 1.60 | 3.11 | 7.10 | 3.50                                                        | 2.71 | 1.50 | 3.01 | 6.90 | 3.30 |
| 2220                | 5650                   | 2.75                                                       | 1.70 | 5.50 | 8.20 | 6.50 | 2.65                                                         | 1.50 | 5.40 | 7.30 | 5.90                                                        | 2.55 | 1.30 | 5.30 | 6.60 | 5.60 |

**Density Level A:** For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes.

**Density Level B:** For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).






### **Soldering Process**

#### **Recommended Reflow Soldering Profile**

KEMET's family of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

| Profile Feature                                                  | Termination Finish |  |  |  |
|------------------------------------------------------------------|--------------------|--|--|--|
| Tomereature                                                      | 100% Matte Sn      |  |  |  |
| Preheat/Soak                                                     |                    |  |  |  |
| Temperature Minimum (T <sub>smin</sub> )                         | 150°C              |  |  |  |
| Temperature Maximum (T <sub>smax</sub> )                         | 200°C              |  |  |  |
| Time ( $t_s$ ) from $T_{smin}$ to $T_{smax}$                     | 60 – 120 seconds   |  |  |  |
| Ramp-Up Rate ( $T_L$ to $T_p$ )                                  | 3°C/second maximum |  |  |  |
| Liquidous Temperature $(T_L)$                                    | 217°C              |  |  |  |
| Time Above Liquidous $(t_L)$                                     | 60 – 150 seconds   |  |  |  |
| Peak Temperature $(T_p)$                                         | 260°C              |  |  |  |
| Time Within 5°C of Maximum Peak<br>Temperature (t <sub>p</sub> ) | 30 seconds maximum |  |  |  |
| Ramp-Down Rate ( $T_p$ to $T_L$ )                                | 6°C/second maximum |  |  |  |
| Time 25°C to Peak Temperature                                    | 8 minutes maximum  |  |  |  |

Note: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.



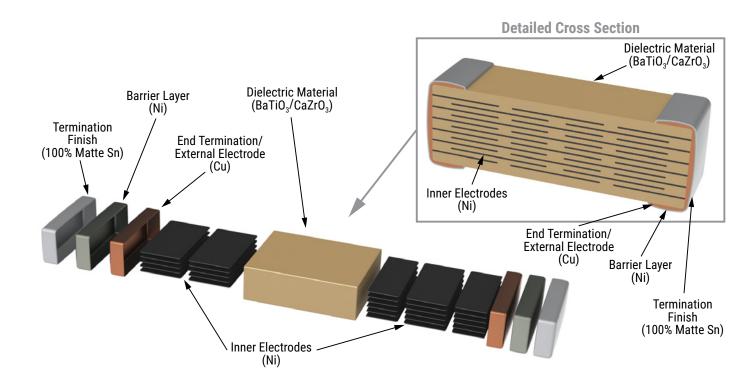


# Table 4 – Performance & Reliability: Test Methods and Conditions

| ltem                                    | Standard                | Specification                                                                                                                                                                                                                                         | Requirements                                                                                           |  |  |  |  |
|-----------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| Visual examination<br>and Dimensions    | IEC 60384-1<br>4.1      |                                                                                                                                                                                                                                                       | No remarkable defect.<br>Dimensions to conform to individual specification<br>sheet.                   |  |  |  |  |
| Capacitance                             | IEC 60384-1<br>4.2.2    |                                                                                                                                                                                                                                                       | Capacitance is within specified tolerance                                                              |  |  |  |  |
|                                         |                         | Class I: COG<br>Capacitance $\leq$ 1,000 pF, 1.0 ±0.2 V <sub>rms</sub> , 1 MHz ±10%<br>Capacitance $\geq$ 1,000 pF, 1.0 ±0.2 V <sub>rms</sub> , 1 KHz ±10%                                                                                            | Dielectric Q/DF Requirement                                                                            |  |  |  |  |
| Dissipation Factor<br>(DF) or Q         | IEC 60384-1<br>4.2.3    | Capacitance > 1,000 pF, 1.0 ±0.2 V <sup>ms</sup> , 1 KHz ±10%<br>Class II: (X7R)<br>1.0 ±0.2 V <sub>ms</sub> , 1 kHz ±10%                                                                                                                             | $Q \ge 1,000$ Cap $\ge 30 \text{ pF}$ $Q \ge 400 + 20C^1$ Cap $< 30 \text{ pF}$                        |  |  |  |  |
|                                         |                         | rms, rms, room                                                                                                                                                                                                                                        | X7R D.F. < 2.5%                                                                                        |  |  |  |  |
|                                         |                         |                                                                                                                                                                                                                                                       | 1. Example for 22 pF: Q ≥ 400 + (20 * 22) = 840                                                        |  |  |  |  |
| Temperature                             | IEC 60384-21/22         | Dielectric Temperature Range                                                                                                                                                                                                                          | Dielectric Capacitance Change                                                                          |  |  |  |  |
| Coefficient                             | 4.6                     | C0G<br>X7R -55 to 125°C                                                                                                                                                                                                                               | COG         ±30 ppm/°C           X7R         ±15%                                                      |  |  |  |  |
| Dielectric<br>Strength                  | IEC 60384-14<br>4.2.1   | X Capacitor: 1,075 VDC (4.3 U <sub>R</sub> )<br>Y Capacitor: 1,500 VAC<br>Duration = 60 Seconds<br>Charge current shall not exceed 50 mA<br>Voltage shall be raised from zero to test voltage<br>at a rate not exceeding 150 V <sub>rms</sub> /second | No evidence of flashover                                                                               |  |  |  |  |
|                                         |                         |                                                                                                                                                                                                                                                       | Dielectric Insulation Resistance                                                                       |  |  |  |  |
| Insulation                              | IEC 60384-21/22         | 500 V for 60 seconds                                                                                                                                                                                                                                  | C0G 1,000 megohm microfarads or 100 GΩ<br>Whichever is smaller                                         |  |  |  |  |
| Resistance                              | 4.5.3                   | <50 mA charging current                                                                                                                                                                                                                               | X7R 500 megohm microfarads or 10 GΩ<br>Whichever is smaller                                            |  |  |  |  |
| Solderability                           | IEC 60384-21/22<br>4.10 | Solder temperature: 245±5°C<br>Dipping time: 2±0.2 seconds                                                                                                                                                                                            | 75% minimum coverage of all metalized area                                                             |  |  |  |  |
|                                         |                         | Solder temperature: 260 ±5°C                                                                                                                                                                                                                          | No visible damage.                                                                                     |  |  |  |  |
| Resistance to                           | IEC 60384-14<br>4.4     | Dipping time: 10 ±1 second<br>Preheat 120°C – 150°C for 1 minute before                                                                                                                                                                               | Dielectric IR Capacitance Change                                                                       |  |  |  |  |
| Solder Heat                             | IEC 60384-21/22<br>4.9  | immersing the capacitor in a eutectic solder.<br>For X7R capacitors, measurements can be made                                                                                                                                                         | COG≥ 1 GΩWithin ±2.5% or ±0.25 pF,<br>whichever is larger.                                             |  |  |  |  |
|                                         |                         | after keeping at room temperature for 24 ±2 hours                                                                                                                                                                                                     | X7R ±7.5%                                                                                              |  |  |  |  |
|                                         |                         | Five cycles           Step         Temp. (°C)         Time (min.)                                                                                                                                                                                     |                                                                                                        |  |  |  |  |
|                                         |                         | 1 -55°C 30 ±3                                                                                                                                                                                                                                         | Dielectric IR Capacitance Change                                                                       |  |  |  |  |
| Temperature                             | IEC 60384-21/22         | 2 25°C 3                                                                                                                                                                                                                                              | COC Within ±2.5% or ±0.25 pF,                                                                          |  |  |  |  |
| Cycling                                 | 4.11                    | 3 125°C 30 ±3                                                                                                                                                                                                                                         | X7R Limit ±7.5%                                                                                        |  |  |  |  |
|                                         |                         | 4 25°C 3<br>Measurements to be made after keeping at room<br>temperature for 24 ±2 hours                                                                                                                                                              |                                                                                                        |  |  |  |  |
|                                         |                         | Test temperature: 40±2°C                                                                                                                                                                                                                              | Dielectric IR Capacitance Change                                                                       |  |  |  |  |
| Humidity<br>(Damp Heat)<br>Steady State | IEC 60384-14<br>4.12    | Humidity: 90 – 95% RH<br>Test time: 500 +24/-0 hours<br>Applied Voltage: 250 VAC                                                                                                                                                                      | COG         25 megohm<br>microfarads<br>or 1 GΩ         Within ±3.0% or ±2 pF,<br>whichever is larger. |  |  |  |  |
|                                         |                         | Measurement to be made after keeping at room temperature for 24±2 hours                                                                                                                                                                               | X7R Whichever is ±15%                                                                                  |  |  |  |  |



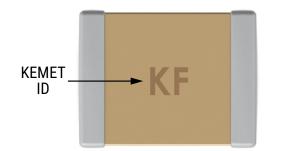
# Table 4 – Performance & Reliability: Test Methods and Conditions cont.

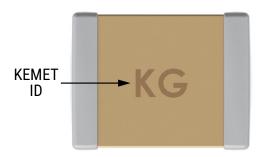

| Item                                                                      | Standard                                       | Specification                                                                                                                                                                                                                                                                                                                  | Requirements                                                                                                                                                          |  |  |  |  |
|---------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Passive<br>Flammability                                                   | IEC 60384-14<br>4.17<br>IEC 60384-1<br>4.38    | Volume sample: 21.56 mm³<br>Flame exposure time: 5 seconds maximum<br>Category of flammability: C                                                                                                                                                                                                                              | No evidence of burning                                                                                                                                                |  |  |  |  |
| Active<br>Flammability                                                    | IEC 60384-21/22<br>4.18                        | The capacitors applied $V_{\rm p}$ (250 VAC). Then each<br>sample shall be subjected to 20 discharges<br>from a tank capacitor, charge to a voltage that,<br>when discharged, Ui 2,500 V for X2, Ui 5,000 V<br>for X1/Y2 across the capacitor under test. The<br>interval between successive discharges shall be<br>5 seconds. | The cheese cloth shall not burn with the flame.                                                                                                                       |  |  |  |  |
|                                                                           |                                                | Impulse Voltage:<br>Each capacitor shall be subjected to a Vp = 5.0<br>KV (X1/Y2 Class Impulse 5 KV) impulse for three<br>times before applied to endurance test.<br>Test Temp: 125 ±3°C                                                                                                                                       | Appearance: No mechanical damage.           Dielectric         IR         Cap. Change         Q/DF                                                                    |  |  |  |  |
| Endurance                                                                 | IEC 60384-14<br>4.14                           | Test time: 1, 000 +48/-0 hours<br>Applied Voltage:<br>X capacitor: 1.25 V <sub>R</sub> (312.5 VAC)<br>Y capacitor: 1.70 V <sub>R</sub> (425 VAC)<br>Once every hour the voltage shall be increased to                                                                                                                          | DiffectiveIXCap. ChangeQ/DrCOG $\geq 1 \text{ GO}$ $\stackrel{\text{Within } \pm 5.0\% \text{ or}}{\pm 0.5 \text{ pF, whichever}} \leq 2.5\%$ X7R $\pm 20\% \leq 5\%$ |  |  |  |  |
|                                                                           |                                                | 1,000 V <sub>rms</sub> for 0.1 second<br>Measurement to be made after keeping at room<br>temperature for 24 $\pm$ 2 hours<br>Capacitors mounted on substrate. The board shall<br>be bent 1 mm with rate of 1 mm/second                                                                                                         |                                                                                                                                                                       |  |  |  |  |
| Resistance<br>to Flexure of<br>Substrate                                  | IEC 60384-21/22<br>4.8                         | 20<br>50<br>1<br>1<br>$45\pm1$<br>$45\pm1$<br>$45\pm1$<br>$45\pm1$                                                                                                                                                                                                                                                             | DielectricCapacitance ChangeCOGWithin ±3.0% or ±2 pF,<br>whichever is larger.X7R±12.5%                                                                                |  |  |  |  |
| Robustness<br>of terminations<br>(Adhesive<br>Strength of<br>Termination) | IEC 60384-21/22<br>4.15<br>IEC 60384-1<br>4.13 | Capacitors mounted on a substrate. A force<br>of 10 N applied perpendicular to the place of<br>substrate and parallel the line joining the center<br>of terminations for 10 ±1 second.                                                                                                                                         | No remarkable damage or removal of the terminations                                                                                                                   |  |  |  |  |
| Vibration                                                                 | IEC 60384-14<br>4.17                           | <ul> <li>Vibration frequency : 10~55 Hz/minute</li> <li>Total amplitude : 1.5 mm</li> <li>Repeat the conditions for 2 hours each<br/>in 3 perpendicular directions</li> </ul>                                                                                                                                                  | <ul> <li>No remarkable damage</li> <li>Capacitance change and Q/D.F.: To meet initial specification</li> </ul>                                                        |  |  |  |  |
| Impulse Voltage                                                           | IEC 60384-14<br>4.13                           | X1: 4.0 KV, X2: 2.5 KV<br>Y2: 5.0 KV<br>Number of impulses: 24 maximum                                                                                                                                                                                                                                                         | There shall be no permanent breakdown or flashover.                                                                                                                   |  |  |  |  |



### **Storage & Handling**

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. In addition, temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 12 months of receipt.

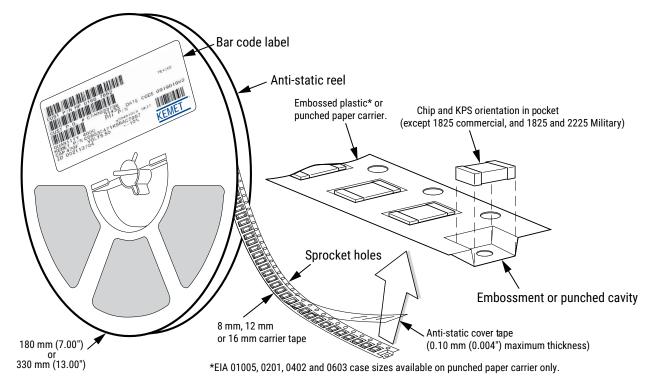

### Construction






# Marking

| Subclass Designation | Marking |  |
|----------------------|---------|--|
| X1/Y2                | KF      |  |
| X2                   | KG      |  |



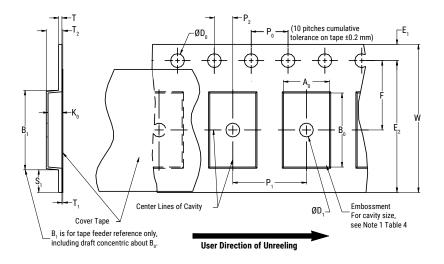





### **Tape & Reel Packaging Information**

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12, 16 and 24 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.




### Table 5 - Carrier Tape Configuration, Embossed Plastic (mm)

|               |                   | Embossed Plastic         |  |  |
|---------------|-------------------|--------------------------|--|--|
| EIA Case Size | Tape Size<br>(W)* | 7" Reel                  |  |  |
|               | ()                | Pitch (P <sub>1</sub> )* |  |  |
| 1808          | 12                | 4                        |  |  |
| ≥ 1812        | 12                | 8                        |  |  |

\*Refer to Figure 1 for W and  $P_1$  carrier tape reference locations. \*Refer to Tables 4 and 5 for tolerance specifications.



### Figure 1 – Embossed (Plastic) Carrier Tape Dimensions



# Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

|              | Constant Dimensions – Millimeters (Inches) |                                  |                            |                           |                           |                       |                                  |                                |                  |
|--------------|--------------------------------------------|----------------------------------|----------------------------|---------------------------|---------------------------|-----------------------|----------------------------------|--------------------------------|------------------|
| Tape<br>Size | D <sub>0</sub>                             | D <sub>1</sub> Minimum<br>Note 1 | E <sub>1</sub>             | P <sub>0</sub>            | P <sub>2</sub>            | R Reference<br>Note 2 | S <sub>1</sub> Minimum<br>Note 3 | T<br>Maximum                   | T1<br>Maximum    |
| 12 mm        | 1.5 +0.10/-0.0<br>(0.059 +0.004/-0.0)      | 1.5<br>(0.059)                   | 1.75±0.10<br>(0.069±0.004) | 4.0±0.10<br>(0.157±0.004) | 2.0±0.05<br>(0.079±0.002) | 30<br>(1.181)         | 0.600<br>(0.024)                 | 0.600<br>(0.024)               | 0.100<br>(0.004) |
|              | Variable Dimensions – Millimeters (Inches) |                                  |                            |                           |                           |                       |                                  |                                |                  |
| Tape<br>Size | Pitch                                      | B <sub>1</sub> Maximum<br>Note 4 | E <sub>2</sub><br>Minimum  | F                         | T <sub>2</sub><br>Maximum | W<br>Maximum          |                                  | $A_{_0},B_{_0}$ , and $K_{_0}$ |                  |
| 12 mm        | Single (4 mm)<br>and Double (8 mm)         | 8.2<br>(0.323)                   | 10.25<br>(0.404)           | 5.5±0.05<br>(0.217±0.002) | 4.6<br>(0.181)            | 12.3<br>(0.484)       |                                  | Note 5                         |                  |

1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.

2. The tape with or without components shall pass around R without damage (see Figure 6).

3. If S<sub>1</sub> < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Document 481 paragraph 4.3 (b)).

4. B, dimension is a reference dimension for tape feeder clearance only.

5. The cavity defined by  $A_{\mu} B_{\mu}$  and  $K_{\mu}$  shall surround the component with sufficient clearance that:

(a) the component does not protrude above the top surface of the carrier tape.

(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).

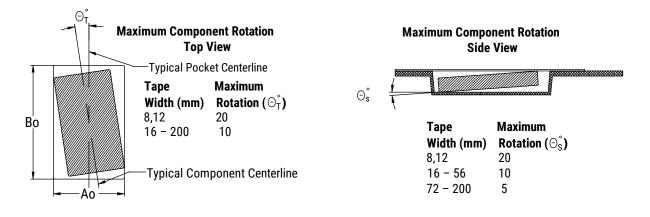
(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 mm and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4)

(e) For KPS Series product, A0 and B0 are measured on a plane 0.3 mm above the bottom of the pocket.

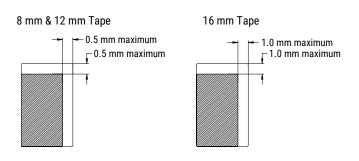
(f) see Addendum in EIA Document 481 for standards relating to more precise taping requirements.



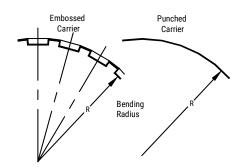
### **Packaging Information Performance Notes**


- 1. Cover Tape Break Force: 1.0 kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

| Tape Width   | Peel Strength                    |  |  |
|--------------|----------------------------------|--|--|
| 8 mm         | 0.1 to 1.0 Newton (10 to 100 gf) |  |  |
| 12 and 16 mm | 0.1 to 1.3 Newton (10 to 130 gf) |  |  |
| 24 mm        | 0.1 to 1.6 Newton (10 to 160 gf) |  |  |

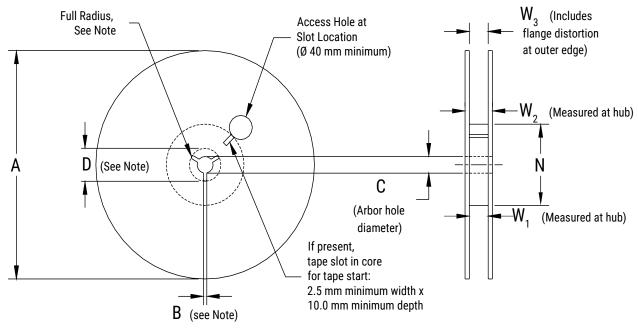

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300±10 mm/minute.

**3. Labeling:** Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624*.


#### Figure 2 – Maximum Component Rotation



### Figure 3 – Maximum Lateral Movement




#### Figure 4 – Bending Radius





### **Figure 5 – Reel Dimensions**



Note: Drive spokes optional; if used, dimensions B and D shall apply.

### Table 7 – Reel Dimensions

Metric will govern

| Constant Dimensions – Millimeters (Inches) |                                                      |                                       |                                        |                                                   |  |  |
|--------------------------------------------|------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------------|--|--|
| Tape Size                                  | A                                                    | B Minimum                             | С                                      | D Minimum                                         |  |  |
| 12 mm                                      | 178±0.20 (7.008±0.008)<br>or 330±0.20 (13.000±0.008) | 1.5<br>(0.059)                        | 13.0 +0.5/-0.2<br>(0.521 +0.02/-0.008) | 20.2<br>(0.795)                                   |  |  |
| Variable Dimensions – Millimeters (Inches) |                                                      |                                       |                                        |                                                   |  |  |
| Tape Size                                  | N Minimum<br>See Note 2, Tables 2–3                  | W <sub>1</sub>                        | W <sub>2</sub> Maximum                 | W <sub>3</sub>                                    |  |  |
| 12 mm                                      | 50<br>(1.969)                                        | 12.4 +2.0/-0.0<br>(0.488 +0.078/-0.0) | 18.4<br>(0.724)                        | Shall accommodate tape width without interference |  |  |



### **KEMET Electronics Corporation Sales Offices**

For a complete list of our global sales offices, please visit www.kemet.com/sales.

#### Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.