

Overview

KEMET's SRA Series axial through-hole ceramic capacitors in X7R dielectric feature proprietary Ceramic Cased Capacitor (C³) Technology and are designed to meet the needs of critical, high reliability and higher temperature applications. C³ Technology features a unique lead attach configuration with direct internal connection to the Multilayer Ceramic Capacitor (MLCC) electrode system. This configuration promotes superior "pull away" performance and uniform coefficient of linear expansion characteristics at elevated temperatures when compared to conventional through-hole technologies. Design details are outlined in U.S. Patent Number 4931899.

Benefits

- · Axial through-hole form factor
- Non-encapsulated
- Proprietary & robust C³ Technology design
- -55°C to +125°C operating temperature range
- DC voltage ratings of 50 V, 100 V and 200 V
- Capacitance offerings ranging from 1,000 pF up to 5.6 µF
- Available capacitance tolerances of ±5%, ±10% and ±20%
- · Temperature stable dielectric
- · Non-polar device, minimizing installation concerns
- SnPb-coated lead finish (60/40)
- Gold-plated lead finish option available upon request (RoHS)

Ordering Information

X7R dielectric features a 125°C maximum operating

temperature and is considered "temperature stable."

The Electronics Industries Alliance (EIA) characterizes

X7R dielectric as a Class II material. Components of this

for bypass and decoupling applications or for frequency

classification are fixed, ceramic dielectric capacitors suited

discriminating circuits where Q and stability of capacitance

change in capacitance with respect to time and voltage and

ambient temperature. Capacitance change is limited to ±15%

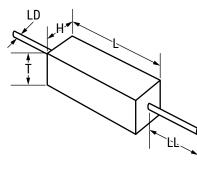
boasts a minimal change in capacitance with reference to

from -55°C to +125°C.

characteristics are not critical. X7R exhibits a predictable

S	R	Α	69	В	475	J	W	S	
Specification/ Series	Dielectric	Lead Configuration	Style/Size	Rated Voltage (VDC)	Capacitance Code (pF)	Capacitance Tolerance ¹	Lead Finish ²	Screening Option	Packaging/ Grade (C-Spec)
S=Standard	R = X7R	A = Axial	16 25 39 50 69	B = 50 D = 100 F = 200	Two significant digits and number of zeros	J = ±5% K = ±10% M = ±20%	W = SnPb (60/40) G = Au	S = Standard A = Group A (MIL-PRF-39014)	Blank = Tray

¹ Additional capacitance tolerance offerings may be available. Contact KEMET for details. ² Lead materials:


Standard: 60% tin (Sn)/40% lead (Pb) finish with 100% copper core ("C" designation). Alternative lead materials and finishes may be available. Contact KEMET for details.

One world. One KEMET

© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.comC1048_X7R_AXIAL_SRA • 9/12/2016 1

Dimensions – Inches (Millimeters)

Series	Style/Size	L Length Maximum	H Height Maximum	T Thickness Maximum	LD Lead Diameter	LL Lead Length Minimum
	16	0.170 (4.32)	0.080 (2.03)	0.080 (2.03)	0.020±0.002	
	25	0.270 (6. 86)	0.100 (2.54)	0.100 (2.54)	(0.508±0.051) 0.025±0.002 (0.635±0.051)	1.25 (31.75)
SRA	39	0.400 (10.16)	0.150 (3.81)	0.150 (3.81)		
	50	0.520 (13.21)	0.265 (6.73)	0.160 (4.06)		
	69	0.720 (18.29)	0.370 (9.40)	0.160 (4.06)	(0.033±0.031)	

Applications

Typical applications include decoupling, bypass, line filtering, transient voltage suppression and frequency discrimination.

Qualification/Certification

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 2, Performance & Reliability.

Environmental Compliance

Devices with standard lead finish option of 60% tin (Sn)/40% lead (Pb) do not meet RoHS criteria. Devices with gold (AU) lead finish option are RoHS Compliant.

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range	-55°C to +125°C
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC)	±15%
Aging Rate (Maximum % Cap Loss/Decade Hour)	3.0%
Dielectric Withstanding Voltage	250% of rated voltage (5±1 second and charge/discharge not exceeding 50 mA)
Dissipation Factor (DF) Maximum Limit at 25°C	3.5%(25 V) and 2.5%(50 V to 200 V)
Insulation Resistance (IR) Limit @ 25°C	1,000 megohm microfarads or 100 GΩ (Rated voltage applied for 120±5 seconds at 25°C)

Regarding aging rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours.

To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to G Ω limit. Select the lower of the two limits.

Capacitance and dissipation factor (DF) measured under the following conditions:

1 MHz ±100kHz and 1.0 V_{rms} ±0.2 V if capacitance ≤ 1,000 pF 1 kHz ±50Hz and 1.0 V_{rms} ±0.2V if capacitance > 1,000 pF

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Post Environmental Limits

High Temperature Life, Biased Humidity, Moisture Resistance						
Dielectric	Rated DC Voltage	ated DC Voltage Capacitance Value		Capacitance Shift		
	> 25		3.0			
X7R	16/25	All	5.0	±20%		
	< 16		7.5			

Table 1A - SRA16 Style/Size (0.080" Square x 0.170" L), Capacitance Range Waterfall

	SRA16 Style/Size (0.080" Square x 0.170" L)					
Rated Volt	age (VDC)	50	100	200		
Voltag	e Code	В	D	F		
Capacitance	Capacitance Tolerance	Capacita	nce Code (Available Cap	acitance)		
1000pF		102	102			
1200pF		122	122	122		
1500pF		152	152	152		
1800pF		182	182	182		
2200pF		222	222	222		
2700pF		272	272	272		
3300pF	J = ±5%	332	332	332		
3900pF	K = ±10%	392	392	392		
4700pF	M = ±20%	472	472	472		
5600pF		562	562	562		
6800pF		682	682			
8200pF		822	822			
0.01µF		103	103			
0.012µF		123	123			
0.015µF		153	153			
Rated Volt	age (VDC)	50	100	200		
Voltag	e Code	В	D	F		

These products are protected under U.S. Patent 4931899, other patents pending, and any foreign counterparts.

Table 1B – SRA25 Style/Size (0.100" Square x 0.270" L), Capacitance Range Waterfall

	SRA25 Styl	e/Size (0.100" Square	x 0.270" L)	
Rated Vo	ltage (VDC)	50	100	200
Volta	ge Code	В	D	F
Capacitance	Capacitance Tolerance	Capacita	ance Code (Available Cap	acitance)
5600pF		562	562	562
6800pF		682	682	682
8200pF		822	822	822
0.01µF		103	103	103
0.012µF		123	123	123
0.015µF		153	153	153
0.018µF	1	183	183	183
0.022µF	J = ±5% K = ±10%	223	223	223
0.027µF	$M = \pm 20\%$	273	273	273
0.033µF	IVI - 120 %	333	333	333
0.039µF		393	393	393
0.047µF		473	473	473
0.056µF		563	563	563
0.068µF		683	683	
0.1µF		104	104	
0.12µF		124	124	
Rated Vo	ltage (VDC)	50	100	200
Volta	ge Code	В	D	F

These products are protected under U.S. Patent 4931899, other patents pending, and any foreign counterparts.

Table 1C - SRA39 Style/Size (0.150" Square x 0.400" L), Capacitance Range Waterfall

	SRA39 Style/Size (0.150" Square x 0.400" L)					
Rated Vol	tage (VDC)	50	100	200		
Voltag	je Code	В	D	F		
Capacitance	Capacitance Tolerance	Capacita	ance Code (Available Capa	acitance)		
0.039µF		393	393	393		
0.047µF		473	473	473		
0.056µF		563	563	563		
0.068µF		683	683	683		
0.1µF		104	104	104		
0.12µF		124	124	124		
0.15µF	1	154	154	154		
0.18µF	J = ±5% K = ±10%	184	184	184		
0.22µF	$M = \pm 10\%$	224	224	224		
0.27µF	IVI - 120 %	274	274	274		
0.33µF		334	334	334		
0.39µF		394	394			
0.47µF		474	474			
0.56µF		564	564			
0.68µF		684	684			
0.82µF		824	824			
Rated Vol	tage (VDC)	50	100	200		
Voltag	je Code	В	D	F		

These products are protected under U.S. Patent 4931899, other patents pending, and any foreign counterparts.

Table 1D – SRA50 Style/Size (0.265" H x 0.160" T x 0.520" L), Capacitance Range Waterfall

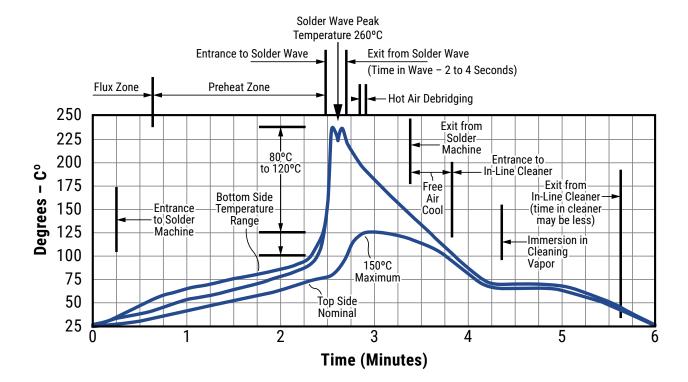
	SRA50 Style/Size (0.265" H x 0.160" T x 0.520" L)						
Rated Vol	Rated Voltage (VDC)		100	200			
Voltag	je Code	В	D	F			
Capacitance	Capacitance Tolerance	Capacita	nce Code (Available Cap	acitance)			
0.047µF		473	473	473			
0.056µF		563	563	563			
0.068µF		683	683	683			
0.1µF		104	104	104			
0.12µF		124	124	124			
0.15µF		154	154	154			
0.18µF		184	184	184			
0.22µF		224	224	224			
0.27µF	J = ±5%	274	274	274			
0.33µF	$K = \pm 10\%$	334	334	334			
0.39µF	$M = \pm 20\%$	394	394	394			
0.47µF	WI - 120%	474	474	474			
0.56µF		564	564	564			
0.68µF		684	684	684			
0.82µF		824	824	824			
1.0µF		105	105	105			
1.2µF		125	125	125			
1.5µF		155	155	155			
1.8µF		185	185				
2.2µF		225	225				
Rated Vol	tage (VDC)	50	100	200			
Voltag	je Code	В	D	F			

These products are protected under U.S. Patent 4931899, other patents pending, and any foreign counterparts.

Table 1E - SRA69 Style/Size (0.370" H x 0.160" T x 0.720" L), Capacitance Range Waterfall

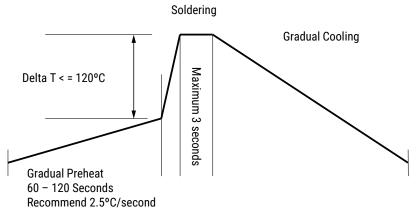
SRA39 Style/Size (0.150" Square x 0.400" L)						
Rated Voltage (VDC)		50	100	200		
Volta	ge Code	В	D	F		
Capacitance	Capacitance Tolerance	Capacita	ance Code (Available Capa	citance)		
0.1µF		104	104	104		
0.12µF		124	124	124		
0.15µF		154	154	154		
0.18µF		184	184	184		
0.22µF		224	224	224		
0.27µF		274	274	274		
0.33µF		334	334	334		
0.39µF		394	394	394		
0.47µF		474	474	474		
0.56µF	J = ±5%	564	564	564		
0.68µF	$J = \pm 5\%$ K = $\pm 10\%$	684	684	684		
0.82µF	M = ±20%	824	824	824		
1.0µF	IVI - 120 %	105	105	105		
1.2µF		125	125	125		
1.5µF		155	155	155		
1.8µF		185	185	185		
2.2µF		225	225	225		
2.7µF		275	275	275		
3.3µF		335	335			
3.9µF		395	395			
4.7µF		475	475			
5.6µF		565	565			
Rated Vo	tage (VDC)	50	100	200		
Volta	je Code	В	D	F		

These products are protected under U.S. Patent 4931899, other patents pending, and any foreign counterparts.


Soldering Process

Recommended Soldering Technique:

- Solder Wave
- Hand Soldering (Manual)


Recommended Soldering Profile:

Optimum Wave Solder Profile

• Hand Soldering (Manual)

KEMET recommends following the guidelines and techniques outlined in technical bulletins F2103 and F9207.

Table 2 – Performance & Reliability: Test Methods and Conditions

Stress	Reference	Test or Inspection Method
		Magnification 50 X. Conditions:
		a) Method B, 4 hours at 155°C, dry heat at 235°C
Solderability	J-STD-002	b) Method B at 215°C category 3
		c) Method D, category 3 at 260°C
Temperature Cycling	JESD22 Method JA-104	1,000 cycles (-55°C to +125°C), Measurement at 24 hours. +/-2 hours after test conclusion.
	MIL-STD-202 Method	Load Humidity: 1,000 hours 85°C/85% RH and Rated Voltage. Add 100 K ohm resistor. Measurement at 24 hours. +/-2 hours after test conclusion.
Biased Humidity	103	Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor. Measurement at 24 hours. +/-2 hours after test conclusion.
Moisture Resistance	MIL-STD-202 Method 106	t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered. Measurement at 24 hours. +/-2 hours after test conclusion.
Thermal Shock	MIL-STD-202 Method 107	–55°C/+125°C. Note: Number of cycles required – 300. Maximum transfer time – 20 seconds. Dwell time – 15 minutes. Air – Air.
High Temperature Life	MIL-STD-202 Method 108/EIA-198	1,000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 2 X rated voltage applied.
Storage Life	MIL-STD-202 Method 108	150°C, 0 VDC, for 1,000 hours.
Vibration	MIL-STD-202 Method 204	5 g for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8"X5" PCB .031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10–2,000 Hz.
Resistance to Soldering Heat	MIL-STD-202 Method 210	Condition B. No pre-heat of samples. Note: single wave solder - procedure 2.
Terminal Strength	MIL-STD-202 Method 211	Conditions A (2.3kg or 5 lbs)
Mechanical Shock	MIL-STD-202 Method 213	Figure 1 of Method 213, Condition F.
Resistance to Solvents	MIL-STD-202 Method 215	Add aqueous wash chemical, OKEM Clean or equivalent.

Storage & Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature-reels may soften or warp, and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C, and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts, and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability, chip stock should be used promptly, preferably within 1.5 years of receipt.

Packaging Details

Lead Spacing	Component Pitch (P1)
0.100 (2.54)	5.08
0.200 (5.08)	3.81
0.400 (10.16)	7.62
0.170 (4.32)	
0.220 (5.59)	
0.275 (6.98)	
0.300 (7.62)	
0.375 (9.52)	
0.475 (12.06)	
0.575 (14.60)	
0.675 (17.14)	

Packaging Quantities

Series	Style/Size	Tray Quantity Minimum ¹	Tray Quantity Maximum ¹
	16		
	25		
SRA	39	1	25
	50		
	69		

¹ Minimum order value applies. Contact KEMET for details.

Marking

Manufacturer's ID	KEC
Capacitance	106J
Voltage	50V
Date Code	123

KEMET Electronic Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.