Overview

These electrolytic capacitors contain a radial crown which allows them to be mounted in a standing position. They feature outstanding electrical performance, a polarized, all-welded design, tinned copper wire leads and a negative pole connected to the case. The winding is housed in a cylindrical aluminium can with a high purity aluminium lid and a high quality rubber gasket. Low ESR is a result of a low resistive electrolyte/paper system and an all-welded design. Thanks to its mechanical robustness, these capacitors are suitable for use in mobile and aircraft installations, with operation up to +165°C. KEMET automotive grade capacitors meet the demanding Automotive Electronics Council's AEC–Q200 qualification requirements.

Benefits

• AEC–Q200 automotive qualified
• Up to 1,000 hours at +165°C
• Resistance to high ambient temperatures
• Extremely high ripple current, up to 22 Arms at 140°C
• Outstanding electrical performance
• Radial crown that allows mounting in a standing position

Applications

The KEMET PEH236 is a new generation of high performance electrolytic capacitors. It is designed for automotive applications with extremely high demands and temperature requirements up to 165°C.

Part Number System

<table>
<thead>
<tr>
<th>PEH236</th>
<th>H</th>
<th>F</th>
<th>380</th>
<th>0</th>
<th>Q</th>
<th>E4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td></td>
<td></td>
<td>Rated Voltage (VDC)</td>
<td>Size Code</td>
<td>Capacitance Code (µF)</td>
<td>Version</td>
</tr>
<tr>
<td>Radial Crown Aluminum Electrolytic with Soldering Star Termination</td>
<td>H = 25</td>
<td>K = 40</td>
<td>See Dimension Table</td>
<td>The last two digits represent significant figures. The first digit indicates the total number digits.</td>
<td>0 = Standard</td>
<td>Q = –10 +30%</td>
</tr>
</tbody>
</table>
Performance Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Performance Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance Range</td>
<td>250 – 2,000 µF</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>25 – 40 VDC</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +165°C</td>
</tr>
<tr>
<td>Capacitance Tolerance</td>
<td>-10/+30%, at 100 Hz/+20°C</td>
</tr>
<tr>
<td>Operational Lifetime</td>
<td></td>
</tr>
<tr>
<td>D (mm)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>6,300</td>
</tr>
<tr>
<td></td>
<td>18 and 20</td>
</tr>
<tr>
<td></td>
<td>8,400</td>
</tr>
<tr>
<td>Shelf Life</td>
<td>5,000 hours at +105°C or 10 years at +40°C 0 VDC</td>
</tr>
<tr>
<td>Leakage Current</td>
<td>I = 0.003 CV * 4.0 (µA)</td>
</tr>
<tr>
<td></td>
<td>C = rated capacitance (µF), V = rated voltage (VDC). Voltage applied for 5 minutes at +20°C.</td>
</tr>
</tbody>
</table>

Vibration Test Specifications

- 1.5 mm displacement amplitude or 20 g maximum acceleration. Vibration applied for three 22-hour sessions at 10 – 2,000 Hz (capacitor clamped by body).
- No leakage of electrolyte or other visible damage. Deviations in capacitance from initial measurements must not exceed: Δ C/C < 5%

Tests at 165°C

- Endurance test, +165°C, V_r, 1,000 hours, Thermal Shock, -40 to +165°C, 200 cycles, Surge Voltage test, +165°C, 1.15 x V_r, 1,000 cycles

Standards

- IEC 60384–4 long life grade 40/125/56, AEC–Q200

Compensation Factor of Ripple Current (RC) vs. Frequency

<table>
<thead>
<tr>
<th>Frequency</th>
<th>100 Hz</th>
<th>300 Hz</th>
<th>1 kHz</th>
<th>5 kHz</th>
<th>100 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>0.35</td>
<td>0.57</td>
<td>0.80</td>
<td>1.00</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Test Method & Performance

Endurance Life Test

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>+165°C</td>
</tr>
<tr>
<td>Test Duration</td>
<td>1,000 hours</td>
</tr>
<tr>
<td>Ripple Current</td>
<td>Maximum ripple current specified in table</td>
</tr>
<tr>
<td>Voltage</td>
<td>The sum of DC voltage and the peak AC voltage must not exceed the rated voltage of the capacitor</td>
</tr>
</tbody>
</table>

Performance

- The following specifications will be satisfied when the capacitor is tested at +20°C:
 - Capacitance Change: Within 15% of the initial value
 - Equivalent Series Resistance: Does not exceed 200% of the initial value
 - Leakage Current: Does not exceed leakage current limit
Ordering Options Table

<table>
<thead>
<tr>
<th>Packaging Kind</th>
<th>Lead Length (mm)</th>
<th>Lead and Packaging Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tray</td>
<td>3.3 ±0.5</td>
<td>E4</td>
</tr>
</tbody>
</table>

Dimensions – Millimeters

END VIEW (+)
SIDE VIEW

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Dimensions in mm</th>
<th>Approximate Weight Grams</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D ±0.5 L ±1 d ±0.03 LL ±0.5</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>16.0 27.7</td>
<td>3.3 8</td>
</tr>
<tr>
<td>G</td>
<td>16.0 35.7 1.0</td>
<td>3.3 11</td>
</tr>
<tr>
<td>M</td>
<td>18.0 27.5 1.0</td>
<td>3.3 11</td>
</tr>
<tr>
<td>N</td>
<td>18.0 35.5 1.0</td>
<td>3.3 14</td>
</tr>
<tr>
<td>V</td>
<td>18.0 39.5 1.0</td>
<td>3.3 16</td>
</tr>
<tr>
<td>H</td>
<td>20.0 27.7 1.0</td>
<td>3.3 13</td>
</tr>
</tbody>
</table>
Shelf Life

The capacitance, ESR and impedance of a capacitor will not change significantly after extended storage periods, however, the leakage current will very slowly increase. KEMET products are particularly stable and allow a shelf life in excess of ten years at 40°C. See sectional specification under each product for specific data.

Failure Rate

Estimated field failure rate: ≤ 0.15 ppm (failures per year/produced number of capacitors per year)
The expected failure rate for this capacitor range is based on field experience for capacitors with structural similarity.
As Per PEG Equivalents

Environmental Compliance

All Part Numbers in this datasheet are Reach and RoHS compliant and Halogen-Free.

As an environmentally conscious company, KEMET is working continuously with improvements concerning the environmental effects of both our capacitors and their production.

In Europe (RoHS Directive) and in some other geographical areas such as China, legislation has been put in place to prevent the use of some hazardous materials, such as lead (Pb), in electronic equipment. All products in this catalog are produced to help our customers' obligations to guarantee their products and fulfill these legislative requirements. The only material of concern in our products has been lead (Pb), which has been removed from all designs to fulfill the requirement of containing less than 0.1% of lead in any homogeneous material. KEMET will closely follow any changes in legislation worldwide and make any necessary changes in its products, whenever needed.

Some customer segments such as medical, military and automotive electronics may still require the use of lead in electrode coatings. To clarify the situation and distinguish products from each other, a special symbol is used on the packaging labels for RoHS compatible capacitors.

Due to customer requirements, there may appear additional markings such as lead-free (LF), or lead-free wires (LFW) on the label.
Table 1 – Ratings & Part Number Reference

<table>
<thead>
<tr>
<th>VDC</th>
<th>Rated Capacitance</th>
<th>Size Code</th>
<th>Case Size</th>
<th>Ripple Current</th>
<th>ESR Maximum</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>Rated</td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 Hz</td>
<td>20°C (µF)</td>
<td>≥ 5 kHz</td>
</tr>
<tr>
<td>25</td>
<td>800</td>
<td>F</td>
<td>16 x 27</td>
<td>15.6</td>
<td>9.9</td>
<td>4.4</td>
</tr>
<tr>
<td>25</td>
<td>1,200</td>
<td>G</td>
<td>16 x 35</td>
<td>17.9</td>
<td>11.3</td>
<td>5.1</td>
</tr>
<tr>
<td>25</td>
<td>1,200</td>
<td>M</td>
<td>18 x 27</td>
<td>18.2</td>
<td>11.5</td>
<td>5.1</td>
</tr>
<tr>
<td>25</td>
<td>1,800</td>
<td>N</td>
<td>18 x 35</td>
<td>20.4</td>
<td>12.9</td>
<td>5.3</td>
</tr>
<tr>
<td>25</td>
<td>2,000</td>
<td>V</td>
<td>18 x 39</td>
<td>21.3</td>
<td>13.5</td>
<td>6.0</td>
</tr>
<tr>
<td>25</td>
<td>1,500</td>
<td>H</td>
<td>20 x 27</td>
<td>22.1</td>
<td>14.0</td>
<td>6.2</td>
</tr>
<tr>
<td>40</td>
<td>250</td>
<td>F</td>
<td>16 x 27</td>
<td>14.1</td>
<td>8.9</td>
<td>4.0</td>
</tr>
<tr>
<td>40</td>
<td>370</td>
<td>G</td>
<td>16 x 35</td>
<td>16.3</td>
<td>10.3</td>
<td>4.6</td>
</tr>
<tr>
<td>40</td>
<td>380</td>
<td>M</td>
<td>18 x 27</td>
<td>16.8</td>
<td>10.6</td>
<td>4.7</td>
</tr>
<tr>
<td>40</td>
<td>560</td>
<td>N</td>
<td>18 x 35</td>
<td>19.0</td>
<td>12.0</td>
<td>5.4</td>
</tr>
<tr>
<td>40</td>
<td>640</td>
<td>V</td>
<td>18 x 39</td>
<td>19.9</td>
<td>12.6</td>
<td>5.6</td>
</tr>
<tr>
<td>40</td>
<td>470</td>
<td>H</td>
<td>20 x 27</td>
<td>20.3</td>
<td>12.8</td>
<td>5.7</td>
</tr>
</tbody>
</table>

1 Capacitor-mounted with low thermal resistance path (heat-sink).

Marking

© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com

A4087_PEH236 • 4/24/2020 5
Construction

Detailed Cross Section

- Rubber Gasket
- Aluminum Can
- Tinned Copper Wire Lead (+)
- Welded Terminal Tab (+)
- High Purity Aluminum Lid
- Welded Terminal Tab (+)
- Margin
- Aluminum Can
- Extended Cathode
- Radial Crown (-)
- Tinned Copper Wire Lead (+)
- Rubber Gasket
- High Purity Aluminum Lid
- Welded Terminal Tab (+)
- Margin
- Aluminum Can
- Extended Cathode
- Radial Crown (-)

- Paper Spacer Impregnated with Electrolyte (First Layer)
- Cathode Aluminum Foil, Etched, (Second Layer)
- Paper Spacer Impregnated with Electrolyte (Third Layer)
- Anode Aluminum Foil, Etched, Covered with Aluminum Oxide (Fourth Layer)
- Tinned Copper Wire Lead (+)
- Welded Terminal Tab (+)
- High Purity Aluminum Lid
- Welded Terminal Tab (+)
- Margin
- Aluminum Can
- Extended Cathode
- Radial Crown (-)

- Aluminum Can
- Welded Terminal Tab (+)
- Tinned Copper Wire Lead (+)
- Rubber Gasket
- High Purity Aluminum Lid
- Welded Terminal Tab (+)
- Margin
- Aluminum Can
- Extended Cathode
- Radial Crown (-)

- Paper Spacer Impregnated with Electrolyte (First Layer)
- Cathode Aluminum Foil, Etched, (Second Layer)
- Paper Spacer Impregnated with Electrolyte (Third Layer)
- Anode Aluminum Foil, Etched, Covered with Aluminum Oxide (Fourth Layer)
- Tinned Copper Wire Lead (+)
- Welded Terminal Tab (+)
- High Purity Aluminum Lid
- Welded Terminal Tab (+)
- Margin
- Aluminum Can
- Extended Cathode
- Radial Crown (-)
Construction Data

The manufacturing process begins with the anode foil being electrochemically etched to increase the surface area and then “formed” to produce the aluminum oxide layer. Both the anode and cathode foils are then interleaved with absorbent paper and wound into a cylinder. During the winding process, aluminum tabs are attached to each foil to provide the electrical contact.

The winding is assembled to the capacitor Al-can and to the Al-lid. The can is filled with electrolyte and the winding is impregnated during a vacuum treatment. The capacitor is sealed. Throughout the process, all materials inside the housing must be maintained at the highest purity and be compatible with the electrolyte.

Each capacitor is aged and tested before being packed. The purpose of aging is to repair any damage in the oxide layer and thus reduce the leakage current to a very low level. Aging is carried out at elevated temperature and is accomplished by applying voltage to the device while carefully controlling the supply current. The process takes between 2 and 20 hours, depending on voltage rating.

Damage to the oxide layer can occur due to a variety of reasons:

• Slitting of the anode foil after forming
• Attaching the tabs to the anode foil
• Minor mechanical damage caused during winding

The following tests are applied for each individual capacitor.

Electrical:
• Leakage current
• Capacitance
• ESR
• Tan Delta

Mechanical/Visual:
• Pull strength test of wire terminals
• Print detail
• Box labels
• Packaging, including packed quantity
KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation’s ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET’s products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.